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The flow of mixtures of gases with greatly differing molecular masses under rapid ac- 
celeration or braking of the flow with high gradients in hydrodynamic quantities which occurs 
in shock waves cannot be described within the framework of conventional, i.e., single-velo- 
city, single-temperature Navier-Stokes equations. Because of the high inertia of the heavy 
molecules in such flows a velocity "slip" develops between the mixture components, and in 
view of the difficulty of energy exchange between molecules with a large mass difference 
each component establishes its own temperature. The difference in hydrodynamic velocities 
of the components which often develops and the temperature difference are comparable to the 
velocities and temperatures themselves. In these cases one must employ the equations of 
multivelocity multitemperature mixture gas dynamics (multiliquid hydrodynamic equations) in 
which each component (or group of components) is characterized by its own hydrodynamic velo- 
city and temperature. The problem of shock wave structure in a mixture of gases with greatly 
differing molecular masses (E = mz/m 2 ~ I) was solved in [i] using the equations of two- 
velocity two-temperature gas dynamics [2, 3]. However, the partial viscosity and thermal 
conductivity coefficients appearing in these equations are equal to the corresponding coeffi- 
cients of the pure gases. This leads to a situation where calculation results agree with 
experimental data and calculations based on kinetic equations for only a narrow range of 
heavy component concentration. It was concluded in [i] that to expand the range of applica- 
bility of these equations it would be necessary to use more general expressions for the par- 
tial transport coefficients which depend on concentration and the parameters of the other 
component. 

In [4], equations with such coefficients were obtained from a system of 13-moment (for 
each mixture component) equations [5, 6] and used to solve the problem of structure of a 
moderate intensity shock wave in He Ar and He-Xe gas mixtures. Below we will offer a de- 
tailed study of this problem, present new results, and analyze the same. 

I. Basic System of Equations and Formulation of the Problem. For the one-dimensional 
case the system of equations of two-velocity two-temperature gas dynamics has the form [4] 
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Here pi, ui, and T i are the mass density, velocity, and temperature of component i; n i = 
Pi/mi; R i = k/mi; k is Boltzmann's constant. The coefficients K and q, which characterize 
exchange of momentum and energy between the mixture components and the partial viscosity 
~i and thermal conductivity h i coefficients will be written in the form of [4] 

K = t6 P~P~ QO,~), 3k 
3 m I § I~ q - -  mi -t- m,~ K,  
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Equations (i.I) and (1.2) do not include terms which vanish for the case of a Maxwell mole- 
cule model, while Qij and the partial stress tensors also omit terms -uij ~ (in view of the 
condition uij/42kT~)m ~ << 1 [3]). The kinetic coefficients Di and I i are expanded in e and 
terms of order c are dropped (but terms -sn~/n2 are retained for p~ e p2). 

We note that Eq. (1.2) transforms to the expressions of [2] under the assumptions made 
therein, while Eqs. (i.I) and (1.2) transform into the Navier-Stokes equations when single- 
velocity single-temperature flow is realized. Therefore, it can be expected that Eq. (I.i) 
with Eq. (1.2) will describe shock-wave structure over a wide range of concentration values 
for the heavy component x2 (x i = n i / (n~ + na)). 

We must find a steady-state solution of system (i.i) satisfying the boundary conditions 
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( 1 . 3 )  

(the subscript 0 denotes parameters of the incident flow, while quantities with the subscript 
1 are related to parameters of the incident flow by the Hugoniot relationships for an equilib 
rium mixture). 

To perform calculations it will be convenient to transform to dimensionless variables 

ft~ = R / R  ~ R ~ = kn~ ~ -x = x /L* ,  -t = t ]/r-R-6~/L *, 

L* = ~t*/(p~176 

( 1 . 4 )  

where u ~ is the incident flow velocity, ~* is the gas mixture viscosity coefficient under 
sonic conditions [i.e., at a temperature T* = 3T~ + M02/3)/4, M 0 = u~ ~ which is calcu- 
lated with Wilke's expression [7]. (In the case of solid-sphere molecules the spatial vari- 
able is dedimensionalized using the molecular free path length in the incident flow L-, as 
defined in [8]). In the variables of Eq. (1.4), Eq. (l.l) and boundary conditions (1.3) 
have the form 

s ' o7 - - 0 ,  i =  t ,  2, ] ~ i ,  
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Here the dimensionless coefficients 

7~ - Z~L*/(p o V - ~ - ~ ) ,  ~{ = qL*/(O?n0 / ~ ) ,  

a r e  i n t r o d u c e d  t o g e t h e r  w i t h  t h e  d i m e n s i o n l e s s  v e l o c i t y  a n d  t e m p e r a t u r e  b e h i n d  t h e  s h o c k  
wave 
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The value of s is chosen on the basis of numerical experiments such that expansion of the 
integration region does not lead to change in the computation results. 

To model the kinetic coefficients of Eq. (1.2) we express the ~-integrals appearing 
therein in terms of the viscosity and thermal conductivity coefficients [Di]~ and [li] l of 
the pure gas of type i and the diffusion coefficient for the mixture [Dij] l using expres- 
sions obtained in the first approximation in Sonin polynomials [9]. We then assume that 
the intermolecular interaction potentials are expressible in powers and write [Di]~, [Ii]i, 
and [Dij] I in terms of their values in the incident flow. As a result we have 
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where Pr i is the Prandtl number of gas i. The exponents v i and v12 were selected using ex- 
perimental data on the viscosity of gas i and diffusion in the mixture, respectively [7, 
9, i0]: 

% ( H e ) � 9  ~ 0 , 6 4 7 ,  % ( A r )  := 0 ,816 ,  % ( X e )  • 0.93 ,  

v l ~ ( l l e  -- Ar)  ~-- 0 ,25 ,  Vr_,(He _ X e )  =~ 0 .32 .  
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For proper comparison with results obtained by the Monte Carlo direct statistical model- 
ing method, calculations were performed for a model of the molecules as elastic solid spheres 
(~i = ~i~ = 0.5) with effective molecular diameter ratios [8] OHe/OAr = 2.19/3.66, OHe/OXe = 

2.19/4.94. 

To solve the problem of Eqs. (1.5) and (1.6) we use the determination method, i.e., 
we seek a solution of the nonsteady-state equations in a coordinate system moving with the 
wave, with subsequent exit to a steady-state regime. To approximate Eq. (1.5) an implicit 
difference method involving splitting of the physical processes was used, the method being 
described in detail in [I]. 

2. Calculation Results and Evaluation. A series of calculations was performed for 
an incident flow Mach number range M 0 = 1.58-4, while at each value of M 0 calculations were 
performed for three values of the heavy component concentration, in the ranges of low (1.5- 
5%), moderate (10-15%), and large (=50%) concentrations. 

The simplest parameter characterizing shock-wave structure is the "effective thickness" 
of the shock wave, as defined by the maximum slope of the mixture mass density profile A = 
(~i _ ~0)/(d~/dx)max (Prandtl formula). We also introduce an "effective thickness" for the 
shock wave in each mixture component, defined by the maximum slope of the partial density 

A i = (~i I - ~i~ . 

Figure la, b shows calculated and experimental results for A and AAr/AHe at M 0 = 2 and 
various Ar concentrations (i, calculation; 2, experiment [ii]). It is evident that the cal- 
culations describe the experimental data satisfactorily over the entire concentration range. 
Also shown is the analytical solution for thickness of a weak shock wave [4] (line). It 
is evident that this solution, although obtained as M 0 + i, can be used to determine shock-wave 
thickness for M 0 values up to two. We note that from some value XArAAr < AHe. However, 
the graphs of partial densities Pi in the shock wave presented below show that the width 
of the transition layer [defined by Taylor as the distance between points at which (Pi - 
pi~ I - pi ~ = 0.05 and (pi i - pi)/(pi ~ - pi ~ = 0.05] for the heavy component is always 
larger than that of the light component. This contradiction indicates the limited applica- 
bility of the Prandtl expression for determination of shock-wave thickness in mixtures. 

Figures 2-5 show profiles of partial densities, velocities, and temperatures in the 
shock wave z defined in the form Vi = (ui - ul)/(u~ - ul), Ti = (Ti - I)/(TI - I), Pi = 
(Pi - l)/(Pi I - I) (pi ~ = ~0/~i). The origin is taken at the point where the numerical den- 
sity of the mixture has changed to half of its change in the shock wave, i.e., x1~ + x2~ = 
0.5 at x = 0. The results of the present study are shown by solid lines. Results of calcula- 
tions in an He-Ar mixture are also compared with experimental data and numerical modeling 
with kinetic equations. 

Initially calculations were performed for M 0 < 2 and moderate Ar concentrations (M 0 = 
1.58, 11% Ar in Fig. 2), while there is no doubt that the equations of a continuous medium 
are operative. The convincing agreement with experimental [12] and calculated [13] data 
is evident (i, 5, 9, VHe; 2, 6, I0, VAr; 3, 7, ii, THe; 4, 8, 12, TAr;5-8, experiments of [12]; 
9-12, calculation by the Monte Carlo method for the BCH model [13]). The effects of "separa- 
tion of the mixture components over velocity and temperature begin to appear from M 0 = 2, 
especially at low concentrations of the heavy gas (Fig. 3, M 0 = 2.07, 2.2% Ar: I, 3, 5, PHe; 
2, 4, 6, PA~; 3, 4, calculation by Navier-Stokes equations [14]; 5, 6, experiments of [ii], 
7, THe; 8, TAr). The solution of the Navier-Stokes equations leads to a nonmonotonic heavy 
component density profile [14]. As has been noted in the literature, such a profile, which 
according to the relationship PiUi = C i = const indicates acceleration of the heavy gas in 
the initial portion of the shock wave and subsequent braking, has no physical meaning and 
contradicts the experimental data [ii]. The solution using the model of Eqs. (i.i) and (1.2) 
agrees with experiment. 

For Mach numbers close to two, calculations with moderate (13%) and large (48%) argon 
concentrations lead to more complete agreement with experiments. Moreover, at 48% At, where 
conditions are realized for single-temperature single-velocity description of the mixture, 
Eqs. (I.i) and (1.2) and the Navier-Stokes equations yield coinciding results over almost 
the entire shock-wave width (Fig. 4, M 0 = 2.24: i, 3, 5, PHe; 2, 4, 6, bAr; 3-6, experiments 
of [ii, 15]; 7, calculation, Navier--Stokes equations [14]). 

We note that even at M 0 = 3 there is good agreement with the results of numerical solu- 
tion of the BCH model of the Boltzmann equation [16] (Fig. 5, 10% At: i, 5, QHe; 2, 6, QAr; 
3, 7, ~He; 4, 8, ~Ar; 5-8, BCH model). 

535 



> 41 h ++",,,I i 
l i ' " -  z A n Y  [ +; f 

\ , I 

. YY J 
- 10 0 !0  ..~IL * 

Fig. 5 

A 

0,5 

I 

,/ 

- 4  

~/ 

o 3  
+ 4  

0 4 8 re~L- 

Fig. 6 

I/A 

~ 20 40 2c/i * 

Fig. 7 

Similar calculations were performed for an He-Xe mixture, where one could expect that 
the effects caused by the difference in molecular masses(~ = 3.10 -2 ) would appear still more 
strongly. Results for the case M 0 = 3.89 and 3% Xe are shown in Figs. 6 and 7. The density 
data are sufficiently close to those obtained by the Monte Carlo method [17] (Fig. 6: i, 3, 
PHe; 2, 4, PSr; 3, 4, [17]). Figure 7 shows profiles of partial velocities and temperatures 

(i, VHe; 2, VXe; 3, ~He; 4, TXe)- 

The results presented permit establishment of some features of shock-wave structure 
in mixtures of gases with a large difference between molecular masses. It is evident from 
the graphs that within the shock wave large differences develop between the velocities and 
temperatures of the mixture components [(u 2 - u I) - u i, ITI - T21 - Ti] , which justifies 
the use of two-speed two-velocity equations. 

By numerical modeling of the kinetic equations the authors of [16, 18] observed a nonmonoton- 
ic temperature profile for the heavy-mixture component at small concentration levels. The heavy 
gas temperature increases to some value exceeding the equilibrium temperature behind the shock 
wave and thereafter decreases, tending to that value. The present calculations also confirm 
the presence of this nonmonotonicity. In particular, comparison with the results of [16] 
indicates agreement in the value and position of the temperature peak (see Fig. 5). With 
the aid of detailed calculations the dependence of the temperature peak on concentration, 
M0, and the molecular mass ratio e was established. This dependence decreases with increase 
in heavy gas concentration ahead of the shock wave and increases with growth in M 0 for a 
fixed concentration. It follows from comparison of the results for He-At and He-Xe that 
with decrease in e for a fixed value of heavy gas concentration x 2 the temperature peak de- 
creases. Its maximum value is shifted toward lower gas concentrations. For a fixed mass 
concentration the maximum value of the heavy-component concentration increases with increase 
in both M 0 and m2/ml, which agrees qualitatively with [19]. 

We will offer some comments to clarify the mechanism of temperature peak formation. 
In a steady-state shock wave the velocity of the heavy component (in view of the higher iner 
tia of its molecules) always exceeds the velocity of the lighter component. More abrupt 
braking of the lighter component leads, on the one hand, to an increase in its temperature, 
which in the initial segment of the shock wave is always higher than the heavy gas tempera- 
ture and, on the other, to enrichment of the mixture by the light gas. As a result of this 
enrichment energy supply to the heavy gas increases due to operation of the intercomponent 
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interaction force F'' In fact, as follows from the energy equations of Eq. (i.i), such 13 �9 
energy supply is equal to $2Fl2u12/n2 per molecule in the heavy gas and ~iF12u12/nl in the 
light one. Their ratio is ~2nl/~in2 - mlnl/m2n 2 = Pl/P2. If the heavy gas concentration 
ahead of the wave is low, so that 02 o ~ pl ~ then within the wave Pl/P2 = P1~176 ~ i. 
Moreover, for sufficient penetration into the shock layer, where IVu21 > IVull, energy dis- 
sipation due to viscosity occurs essentially in the heavy gas. As a result of these factors, 
as well as heat exchange caused by the temperature difference, intense increase in the tem- 
perature of the heavy gas commences. This may lead to the temperature exceeding the equi- 
librium temperature behind the shock wave. The basic contribution to formation of the tem- 
perature peak is produced by the work of the intercomponent interaction force. As was shown 
in [20], this peak is maintained as the viscosity coefficient tends to zero. 

Another characteristic feature of shock-wave structure at low concentration of the heavy 
component is a clearly expressed shock transition zone, in which the parameters of the light 
component change abruptly, while those of the heavy gas are practically constant, and a re- 
laxation zone, in which the mixture enters an equilibrium state behind the shock wave (see 
Figs. 6 and 7). 

Figures 7 and 8 show graphs of the ratios of the viscous stress tensor Pi,xx to the 
pressure and of the thermal flux q~ ~ to the concrete heat flux in each component of the 

mixture: Pi,xx = Pi,xx/Pi , qi,x =~q~,x/(PicpiTiui ) (c~i = 5Ri/2)" On the one hand these 
relationships provide certain information on the behavlor of Pi,xx and qi,x in the shock 
wave, while on the other they permit determination of the [ange of applicability of Eqs. 
(i.i) and (1.2) with respect to Mach number. In reality, Pi,xx and ~,x are the ratios of 
the Navier-Stokes corrections in the stress tensor and thermal flux to the corresponding 
Euler terms and, therefore, should remain small quantities of the order of magnitude of the 
Knudsen_number. In the He-Ar mixture they do not exceed 0.2 at M 0 = 2.07 (Fig. 8, with 2.2% 

Ar: i, PHe,xx; 2, PAr,xx ; 3, qHe,x; 4, qAr,x), but reach values of 0.63 at M 0 = 4 z while 
in the He-Xe mixture at M 0 = 3.89 they reach 0.4 (see Fig. 7, where 5, PHe,xx; 6, PXe,xx; 
7, qHe,x; 8, qxe,x)" These data indicate that in an He-Ar mixture at M 0 = 4 the equations 
are clearly inapplicable, while in an He-Xe mixture M 0 = 3.5 is the upper limit. 

Of interest is the question of partial temperature anisotropy (Ti, ii - Ti,i)/T i in the 
shock wave, where the longitudinal and perpendicular temperature components are defined by 
the expressions 

(Such a d e f i n i t i o n  o f  Ti , i i  and T i ,  i i s  n o t  p r e c i s e ,  bu t  p r o v i d e s  a q u a l i t a t i v e  d e s c r i p t i o n  
and p e r m i t s  a p p r o x i m a t e  d e t e r m i n a t i o n  o f  t h e  c o n d i t i o n s  u n d e r  which  t h e y  must  be i n t r o d u c e d .  
In  a p r e c i s e  a p p r o a c h  one would i n t r o d u c e  l o n g i t u d i n a l  and t r a n s v e r s e  t e m p e r a t u r e s  as  e a r l y  
as  t h e  a s y m p t o t i c  s o l u t i o n  o f  B o l t z m a n n ' s  e q u a t i o n  and t h e  d e r i v a t i o n  o f  t h e  gas dynamic  
e q u a t i o n s . )  Hence ,  t h e  a n i s o t r o p y  i s  e q u a l  t o  (Ti , [I  - T i , •  = 3 P i , x x / 2  and i s  s m a l l  w i t h i n  
t h e  r a n g e  o f  a p p l i c a b i l i t y  o f  t h e  i n i t i a l  e q u a t i o n s .  F i g u r e  8 shows g r a p h s  o f  Ti,I[  and 
~i,• (5, THe, If; 6, ~Ar, IJ; 7, ~He,i; 8, TAr,I)" Here the large difference of longitudinal 
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temperatures from transverse is caused by the choice of ~i, ll(1) in place of Ti, lJ(1)" A tem- 
perature peak appears in the longitudinal temperature component of the heavy-mixture component. 

It follows from the calculations performed and cDmparison of the results with available 
experimental data and calculations using the kinetic equations that the equations of two-velo- 
city two-temperature gas dynamics, Eqs. (i.i) and (1.2) are applicable for describing shock 
wave structure in gas mixtures at Mach numbers up to 3.5 over a wide range of heavy-mixture 
component concentrations (from 1 to 50%). 
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